Co-overexpression of the Constitutively Active Form of OsbZIP46 and ABA-Activated Protein Kinase SAPK6 Improves Drought and Temperature Stress Resistance in Rice

نویسندگان

  • Yu Chang
  • Ba Hoanh Nguyen
  • Yongjun Xie
  • Benze Xiao
  • Ning Tang
  • Wenliu Zhu
  • Tongmin Mou
  • Lizhong Xiong
چکیده

Drought is one of the major abiotic stresses threatening rice (Oryza sativa) production worldwide. Drought resistance is controlled by multiple genes, and therefore, a multi-gene genetic engineering strategy is theoretically useful for improving drought resistance. However, the experimental evidence for such a strategy is still lacking. In this study, a few drought-responsive genes from rice were assembled by a multiple-round site-specific assembly system, and the constructs were introduced into the rice cultivar KY131 via Agrobacterium-mediated transformation. The transgenic lines of the multi-gene and corresponding single-gene constructs were pre-evaluated for drought resistance. We found that the co-overexpression of two genes, encoding a constitutively active form of a bZIP transcription factor (OsbZIP46CA1) and a protein kinase (SAPK6) involved in the abscisic acid signaling pathway, showed significantly enhanced drought resistance compared with the single-gene transgenic lines and the negative transgenic plants. Single-copy lines of this bi-gene combination (named XL22) and the corresponding single-gene lines were further evaluated for drought resistance in the field using agronomical traits. The results showed that XL22 exhibited greater yield, biomass, spikelet number, and grain number under moderate drought stress conditions. The seedling survival rate of XL22 and the single-gene overexpressors after drought stress treatment also supported the drought resistance results. Furthermore, expression profiling by RNA-Seq revealed that many genes involved in the stress response were specifically up-regulated in the drought-treated XL22 lines and some of the stress-related genes activated in CA1-OE and SAPK6-OE were distinct, which could partially explain the different performances of these lines with respect to drought resistance. In addition, the XL22 seedlings showed improved tolerance to heat and cold stresses. Our results demonstrate that the multi-gene assembly in an appropriate combination may be a promising approach in the genetic improvement of drought resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice.

OsbZIP46 is one member of the third subfamily of bZIP transcription factors in rice (Oryza sativa). It has high sequence similarity to ABA-responsive element binding factor (ABF/AREB) transcription factors ABI5 and OsbZIP23, two transcriptional activators positively regulating stress tolerance in Arabidopsis (Arabidopsis thaliana) and rice, respectively. Expression of OsbZIP46 was strongly indu...

متن کامل

MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice.

Plants have evolved complicated protective mechanisms to survive adverse conditions. Previously, we reported that the transcription factor OsbZIP46 regulates abscisic acid (ABA) signaling-mediated drought tolerance in rice (Oryza sativa) by modulating stress-related genes. An intrinsic D domain represses OsbZIP46 activity, but the detailed mechanism for the repression of OsbZIP46 activation rem...

متن کامل

Corrigendum: The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice

Plants can perceive environmental changes and respond to external stressors. Here, we show that OsNAC2, a member of the NAC transcription factor family, was strongly induced by ABA and osmotic stressors such as drought and high salt. With reduced yields under drought conditions at the flowering stage, OsNAC2 overexpression lines had lower resistance to high salt and drought conditions. RNAi pla...

متن کامل

Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance

Harpin proteins are well known as eliciters that induce multiple responses in plants, such as systemic acquired resistance, hypersensitive response, enhancement of growth, resistance to the green peach aphid, and tolerance to drought. Overexpression of Harpin-encoding genes enhances plant resistance to diseases in tobacco, rice, rape, and cotton; however, it is not yet known whether the express...

متن کامل

Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice.

MAPK (mitogen-activated protein kinase) pathways have been implicated in stress signalling in plants. In the present study, we performed yeast two-hybrid screening to identify partner MAPKs for OsMKK (Oryza sativa MAPK kinase) 6, a rice MAPK kinase, and revealed specific interactions of OsMKK6 with OsMPK3 and OsMPK6. OsMPK3 and OsMPK6 each co-immunoprecipitated OsMKK6, and both were directly ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017